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A massive quantum particle on a two-dimensional curved surface experiences a surface-geometry induced
attractive potential that is characterized by the radii of curvature at a given point. With bilayer graphene sheets
and carbon nanoribbons in mind, we obtain the geometric potential VG for several surface shapes. Under
appropriate conditions that we discuss in detail, this potential suppresses the local Fermi energy. Therefore, we
argue that in zero band-gap materials with a quadratic band structure, it will create p- and n-type regions. We
discuss the consequences of this result, and suggest that surface curvature can provide an avenue to create p-n
junctions and, in general, to control local electronic properties in carbon nanoribbons and bilayer graphene
sheets.
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I. INTRODUCTION

The classical dynamics of a particle subject to �holonomic
or nonholonomic� constraints is well understood. In La-
grangian formulation, these constraints can be represented by
an effective potential.1 In quantum theory, the potential rep-
resenting constraints plays an instrumental role in determin-
ing the quantized spectrum of the system.2 Indeed, low-
dimensional systems are realized by constraints that
classically restrict the motion of the particle in one or more
directions. For example, in two-dimensional electron �or
hole� systems �2DES�, typically realized in III-V semicon-
ductor heterojunctions3 the barrier potential at the hetero-
junction interface, created by differing electron affinities,
leads to a clear separation of energy scales for the motion in
the 2D plane and motion along the direction normal to the
plane. It allows one to separate the particle wave function
into normal and surface components and, at low energies,
focus solely on the surface component.4

The quantum properties of a nonrelativistic particle
constrained5 on an arbitrary orientable surface were first in-
vestigated by da Costa.6,7 He showed that apart from the
necessity of expressing the Laplace-Beltrami operator �2 in
terms of the curvilinear surface coordinates, the geometry of
the surface also leads to an attractive geometric potential
VG�q1 ,q2�=−��2 /8m���1−�2�2 where m is the mass of the
particle, �q1 ,q2� denote surface coordinates, and �1, �2 are
the two position-dependent principal curvatures of the sur-
face. Note that this potential is purely a result of particle
confinement, and therefore is independent of the electric
charge of the particle; it is therefore the same for electrons
and holes. This result is applicable in the limit W�→0 where
W is the thickness of the “two-dimensional” surface and � is
the surface curvature. W will correspond to the width of the
quantum well in 2DES. The geometric potential is small near
a surface maximum or minimum, and is large near saddle
regions where �1�2�0. In particular, we note that for sur-
faces with a constant curvature �spherical sections or a plane�
the geometric potential is equal to zero, VG=0. The bound
states that appear due to the geometric potential8 and the

resultant resonance microwave absorption9 have been inves-
tigated in twisted10 or bent �quasi-one-dimensional electron�
waveguides.11 The effect of curvature on spin-orbit coupling
has been studied in the case of nanospheres and nanotubes.12

More recently, the geometric-potential induced charge sepa-
ration in helicoidal ribbons has been analytically explored.13

However, absent a truly two dimensional system that can be
�easily� bent, the effect of geometric potential on the elec-
tronic band structure has been justifiably ignored.

In this Brief Report, we point out that the geometric po-
tential provides a hitherto unexplored avenue to locally
change the carrier polarity in zero-gap materials. We predict
that it will be possible to create p-n or n-p-n junctions purely
from a suitable surface geometry. Bilayer graphene provides
an ideal realization of a zero-gap material with chiral elec-
trons and holes that have identical mass. Graphene nanorib-
bons �GNR�, recently created by unzipping single and mul-
tiwalled carbon nanotubes14 may provide another promising
candidate that can be used to explore the curvature effects in
a gapless semiconductor. Therefore, in this paper we prima-
rily focus on bilayer graphene. In the next section, we obtain
the geometric potential for two generic cases: first a surface
z= f�x� that is isometric to a plane and second a catenoid that
is not isometric to a plane. In the following section, we show
that at present carrier densities n2D, carriers in bilayer
graphene, with its Bernal-stacked hexagonal lattice structure,
can be treated as massive particles on a curved surface. We
conclude the Brief Report with a qualitative discussion about
experimental consequences and speculation regarding the
geometric potential for monolayer graphene with massless
chiral carriers.

Monolayer and bilayer graphene have been studied in
great detail in recent years. P-N junctions in monolayer
graphene are fabricated by local top gating15 and with an
air-bridge top gate.16 Bilayer graphene has been explored for
its electric field tunability.17,18 The effect of random surface
curvature �ripples� on electronic properties in monolayer
graphene is primarily described via gauge potentials;19 how-
ever, the effect of geometric potential in monolayer and bi-
layer graphene has not been investigated. In monolayer
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graphene near the neutrality point, disorder induced electron-
hole puddles and the resulting array of p-n junctions is
observed.20 However, in this case, the origin of the disorder
and the role, if any, played by monolayer surface curvature is
unclear.20 In particular, the topic of p-n junctions made with
bilayer graphene �that we propose in this paper� has been
scarcely investigated.

In this Brief Report, we argue that due to its essentially
two-dimensional nature �W�→0�, gapless quadratic band
structure, and exceptional material strength, bilayer graphene
presents an excellent candidate for exploration of two-
dimensional systems with curvature.

II. CONTINUUM MODEL

Let us consider a nonrelativistic particle of �effective�
mass m constrained to a surface given by z= f�x� �see Fig. 1�.
We characterize a point on the two-dimensional surface em-
bedded in the three-dimensional space by r= �x ,y , f�x��. The
geometric potential is obtained from the two fundamental
forms associated with the surface.6 The first fundamental
form or, equivalently, the �diagonal� metric tensor21 for the
surface is given by gij =�ir ·� jr=dia�1+ f�2�x� ,1� where i,j
=x,y and f�=df /dx. The second fundamental form hij
=−�ir ·� jn characterizes the change in the surface-normal n
along the surface21 and has only one nonzero element,
hxx�x�=−f��x� / �1+ f��x�2�3/2 where f�=d2f /dx2. Principal
curvatures of the surface are eigenvalues of the matrix6 �
=−hg−1 and, in this case, they are given by �1�x�
= f��x� /�1+ f��x�2 and �2=0. The zero eigenvalue reflects
the translational invariance of the system in the y-direction,
and the zero Gaussian curvature K=�1�2=0 everywhere on
the surface implies that it is isometric to a plane.21 Thus, for
such a surface, the geometric potential is given by VG�x�
=−��2 /8m��f��x� /�1+ f��x�2�2.

We remind the reader that the potential is purely quantum,
can be different for isometric surfaces �for example, a plane

and a cylinder�, and is always attractive. The Hamiltonian for

the constrained particle is Ĥ= Ĥ0+ V̂G and the kinetic contri-
bution is given by

Ĥ0 = −
�2

2m

1
�g

�i��g�g−1�ij� j� �1�

=−
�2

2m
� d2

ds2 +
d2

dy2� , �2�

where g=det gij and s�x�=�0
xdu�1+ f��u�2 is the arc-length

along the surface. In terms of the surface coordinates �s ,y�,
the geometric potential term becomes

VG�s�x�,y� = −
�2

8m� s��x�
s��x�2�s��x�2 − 1

�2

. �3�

Note that for a cylindrical bump of radius a �Fig. 1�a��, we
recover6 a constant geometric potential VG=−�2 /8ma2. This
attractive geometric potential is independent of the sign of
the curvature: a bump, a trough, or combinations thereof lead
to the same constant attractive potential. For a suspended
sheet �Fig. 1�b��,22 f�x�=a�1−cosh�x /a�� where a sets the
length-scale for the catenary, the geometric potential is given
by

VG�s�x�,y� = −
�2

8ma2� a2

a2 + s2�2

. �4�

Lastly, we consider the particle confined to a catenoid �Fig.
1�c�� parameterized by two dimensionless surface coordi-
nates �u ,v� where x=a cosh�u�cos�v�, y=a cosh�u�sin�v�
and z=au. Note that perfect �bilayer� graphene sheets are
planar and, as such, they cannot be mapped onto a surface
with nonzero Gaussian curvature. However, fullerenes or dis-
locations in the honeycomb lattice can lead to surfaces with
nonzero Gaussian curvature. A straightforward calculation
gives the geometric potential

VG�u,v� = −
�2

2ma2

1

cosh4�u�
. �5�

We note that VG�u ,v� is solely a function of u, just as
VG�s ,y� in Eq. �3� is solely a function of s. However, unlike
in the former case, the kinetic energy term on the catenoid
Ĥ0=−��2�1�u� /2ma���2 /�u2+�2 /�v2� is not separable and
reflects the nonzero Gaussian curvature of the surface.

III. APPLICABILITY TO BILAYER GRAPHENE

To map a curved bilayer graphene sheet onto a quantum
particle on a curved surface, two criteria must be satisfied:
kFaG�1 and �aG�1 where aG=1.4 Å is the carbon-carbon
distance in graphene, kF is the Fermi wave vector, and � is
the surface curvature. The first criterion ensures that bilayer
graphene can be treated in the continuum limit. In this limit,
for carrier densities n2D�3.5�1013 cm−2, only the gapless
valence and conduction bands are occupied23,24 and the car-
riers can be approximated as particles with an effective mass
m�	0.03me. The second criterion ensures the detailed lattice

(c)
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FIG. 1. �Color online� Schematic shapes of various curved sur-
faces considered in this paper. The top two, a sheet with a cylindri-
cal bump with radius a �a� and a sheet suspended between two
mesas �b�, have only one nonzero principal curvature ��x� and are
isometric to a plane. The surface at the bottom, a catenoid �c�, has
two nonzero principal curvatures at each point �1�x ,y��2�x ,y��0.
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structure can be ignored on the curvature length-scale, and
because the “thickness” of bilayer graphene sheets is W
	3aG, it also ensures that W��1, or that the bilayer
graphene sheet with nonzero thickness can be considered a
surface. The first criterion is easily satisfied at present carrier
densities in bilayer graphene with n2D	1012 cm−2 and cor-
responding kF	10−2 Å−1. The second criterion, �aG�1 is
satisfied by carbon nanotubes with typical radii 1 /�
	10–30 Å and by typical surface ripples on monolayer
graphene.25 When �	kF the geometric potential VG be-
comes comparable to the Fermi energy EF=�2kF

2 /2m�,
whereas in “planar” bilayer graphene �
0�kF�1 /aG.

Within the continuum approximation, we can consider
two cases. When 1 /aG	�	kF the problem is reduced to
that of a single particle in an attractive external potential.13

This case is not very realistic since at �vanishingly� low car-
rier densities, disorder effects dominate the physics.20,26 On
the other hand, when �	kF�1 /aG, the geometric potential
will reduce the local Fermi energy. In particular, if we con-
sider graphene with n-type carriers in the flat region �EF0

0�, the geometric potential will lower the Fermi energy
from the conduction band to the valence band, EF�q1 ,q2�
=EF0− �VG�q1 ,q2���0. Note that as long as the geometric
potential is constant or slowly varying �as would be the case
for a cylindrical bump�, this result is robust and is indepen-
dent of any other quantum numbers, such as chirality or elec-
tric charge, that the carriers may have. Therefore, we predict
that in such a configuration, the curved regions will have
p-type carriers with a natural p-n junction created between
the curved and flat regions. For the surface z= f�x�, the geo-
metric potential will create p- and n-type strips where the
location, size, and polarity of each strip is determined by the
local Fermi energy EF�x�.

Bilayer graphene is distinguished from its semiconductor
counterparts by the chiral nature of its carriers that leads to
zero transmission probability for normal incidence at a po-
tential barrier in spite the zero gap between the electron and
hole bands.27 Thus, the chirality of the carriers in bilayer
graphene will only affect the transparency �i.e., the transmis-
sion amplitude as a function of incidence angle� of the p-n
junctions created by the geometric potential.28 Such p-n
junctions can be created by either depositing bilayer
graphene on a patterned substrate with requisite bumps and
troughs with radii R	100 Å or by suspending it across a
narrow channel. A local probe29 may also offer an alternative
way to induce controlled curvature in a suspended bilayer
graphene sheet. We emphasize that our prediction is valid for
any two-dimensional zero-gap semiconductor with appropri-
ate curvature, although bilayer graphene and GNRs are the
most promising candidates.

IV. DISCUSSION

In this Brief Report we have proposed that bilayer
graphene on a patterned substrate provides an avenue to cre-
ate a p-n junction. Our prediction provides a direct way to
experimentally probe the effect of geometric potential that
has been, hitherto, neglected in two-dimensional systems.

The origin of the geometric potential VG is well under-
stood for a nonrelativistic massive particle.6 In case of a
planar 2DES, a lattice model naturally leads to carriers with
an effective mass. However, a lattice-model generalization of
the geometric potential is, to our knowledge, an open ques-
tion. The primary difficulty in addressing such a question is
that typical lattice models start with zero thickness, W=0,
whereas the geometric potential arises from taking the limit
W→0.

We conclude the paper with speculation about curved
monolayer graphene. Since the geometric potential VG is ob-
tained from nonrelativistic Schrödinger equation, prima facie
is not applicable to monolayer graphene where the carrier
dynamics is well described by the two-dimensional Dirac
Hamiltonian. Monolayer graphene with random curvature
�ripples� is modeled using random gauge fields19 and mean-
curvature-dependent potential.30 We are unaware of a rigor-
ous derivation of geometric potential for massless particles
or for a lattice-model that leads to linearly dispersing bands.
Dimensional analysis implies that for a surface z= f�x�, the
geometric potential, if nonzero, must scale as VG��vG���
where vG is the velocity of massless carriers in graphene.31 It
follows that under the conditions discussed in the last sec-
tion, this geometric potential will locally change the Fermi
energy EF�x� and will lead to the formation of a p-n junction.
We remind the reader that the transparency of such a junction
in monolayer graphene is drastically different from that in
bilayer graphene although both are zero-gap materials.27

The test of our prediction via experiments and the gener-
alization of the geometric potential to a lattice model will
provide insights into the electronic structure of curved two-
dimensional materials with zero band gap. Curvature in-
duced p-n and p-n-p junctions in bilayer graphene and the
GNR may open up new vistas for nanoelectronics.
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